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Alkaligrass (Puccinellia tenuiflora) is a monocotyledonous halophytic forage grass widely distributed in Northern China. It
belongs to the Gramineae family and shares a close phylogenetic relationship with the cereal crops, wheat and barley. Here, we
present a high-quality chromosome-level genome sequence of alkaligrass assembled from Illumina, PacBio and 10× Genomics
reads combined with genome-wide chromosome conformation capture (Hi-C) data. The ~1.50 Gb assembled alkaligrass genome
encodes 38,387 protein-coding genes, and 54.9% of the assembly are transposable elements, with long terminal repeats being the
most abundant. Comparative genomic analysis coupled with stress-treated transcriptome profiling uncovers a set of unique
saline- and alkaline-responsive genes in alkaligrass. The high-quality genome assembly and the identified stress related genes in
alkaligrass provide an important resource for evolutionary genomic studies in Gramineae and facilitate further understanding of
molecular mechanisms underlying stress tolerance in monocotyledonous halophytes. The alkaligrass genome data is freely
available at http://xhhuanglab.cn/data/alkaligrass.html.
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INTRODUCTION

Saline-alkaline soil imposes ion toxicity, osmotic stress, and
pH stress to plants, severely limiting crop distribution and
agricultural productivity worldwide (Zhu, 2016; Mahajan
and Tuteja, 2005). Studies of saline-alkaline responsive
mechanisms in plants are necessary toward crop genetic
improvements. Halophytes can survive on saline-alkaline
soil due to their unique structure and metabolic pathways to
cope with these stresses (Zhang et al., 2012; Tuteja et al.,
2007). Alkaligrass (Puccinellia tenuiflora) is a mono-

cotyledonous halophyte widely distributed in the saline-
alkaline land in Northern China, and is considered as an
outstanding pasture with high protein content and good pa-
latability for livestock. Alkaligrass belongs to the Gramineae
family and has a close genetic relationship with wheat (Tri-
ticum aestivum) and barley (Hordeum vulgare) (Wang et al.,
2007; Zhang et al., 2013). Through its adaptation to the local
environment, alkaligrass has developed strong tolerance to
various stress conditions, such as stress of up to
600 mmol L–1 NaCl and 150 mmol L–1 Na2CO3 (pH 11.0)
(Zhang et al., 2013), as well as drought and chilling stresses
(Meng et al., 2016). Alkaligrass has evolved high ability of
ion homeostasis and compartmentation, such as selectivity of
K+ over Na+ (Wang et al., 2009), restriction of unidirectional
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Na+ influx (Peng et al., 2004), secretion of Na+ onto leaf
surface (Sun et al, 2005), as well as accumulation of organic
acids and inorganic anions (Guo et al., 2010). Therefore, as a
cool-season perennial plant, alkaligrass is used for turf,
forage and reclamation on saline-alkaline soil, and also
serves as a model plant for studying saline-alkaline stress
responses (Zhao et al., 2016). Investigation of the fine-tuned
physiological and molecular mechanism in alkaligrass in
response to saline-alkaline is critical for crop improvement
(e.g., through genome editing strategy).
Diverse saline-alkali responsive strategies in alkaligrass,

such as the enhanced ion transportation, osmotic home-
ostasis, and reactive oxygen species (ROS) scavenging, have
been reported (Peng et al., 2004; Shi et al., 2002; Sun et al.,
2005). Moreover, high-throughput transcriptome and pro-
teome analyses have revealed that a number of genes and
proteins in leaves, roots and callus from alkaligrass are in-
volved in the response to saline-alkaline (e.g., NaCl, Na2
CO3, and NaHCO3) stresses (Zhang et al., 2013; Yu et al.,
2011; Yu et al., 2013; Zhao et al., 2016; Yin et al., 2019; Suo
et al., 2019; Zhang et al., 2019). The patterns of gene ex-
pression, protein abundance, and post-translational mod-
ification implied that the signal transduction, ion and osmotic
homeostasis, ROS scavenging, transcription and protein
synthesis, as well as energy and secondary metabolisms are
sophisticated in certain organs under various stresses.
However, to date only a few genes have been cloned and
characterized due to the lack of genome information and
genetic transformation system. Most of these cloned genes
encode antiporters/channel proteins (e.g., PutPMP3-1/2,
PutAKT1, PutHKT2;1, PtNHA1, and PutNHX), ROS
scavenging enzymes (e.g., PutCAX1, PutAPX), and metal-
binding protein (e.g., PutMT2), indicating that unique Na+

compartmentalization, K+ transport, and ROS homeostasis in
alkaligrass are critical for stress tolerance (Ardie et al., 2010;
Ardie et al., 2009; Guan et al., 2015; Kobayashi et al., 2012;
Liu et al., 2009; Zhang et al., 2008; Zhang et al., 2014).
A high-quality genome sequence of alkaligrass is much

needed to facilitate the understanding of the fine-tuned gene
functions and its unique gene family feature. The fast-evol-
ving sequencing and genome assembling technologies have
allowed the generation of a large number of reference gen-
omes in plants during the past decade (Shen et al., 2019; Ma
and Cao, 2018; Zhao et al., 2018), including several from
halophytes. The genome assemblies of Thellungiella parvula
(Dassanayake et al., 2011) and Eutrema salsugineum (for-
merly Thellungiella halophila) (Wu et al., 2012; Yang et al.,
2013), two halophytic relatives of Arabidopsis thaliana,
have revealed a complex regulatory network of salinity tol-
erance, which involves gene duplication and transcriptional/
post-transcriptional regulation. Comparative transcriptome
analyses show that SALT OVERLY SENSITIVE1 (SOS1) and
ABA responsive MAPK cascades contribute to stress toler-

ance in these halophytes (Oh et al., 2010; Lee et al., 2013). In
addition, genome assemblies of a monocot halophyte Oryza
coarctata and a C4 halophyte Suaeda aralocaspica also
provide insights into salt tolerance mechanisms in halo-
phytes (Mondal et al., 2018; Wang et al., 2019).
In this study, we present a high-quality chromosome-level

genome assembly of alkaligrass (2n=14), which contains
38,387 predicted protein-coding genes. Transcriptome pro-
filing analysis uncovered novel signaling and metabolic
pathways in alkaligrass involved in coping with saline-al-
kaline stress. Our results provide critical clues for molecular
genetic studies of stress responses in halophytes and have
potential applications in improving the crop saline-alkaline
tolerance.

RESULTS

Genome sequencing and de novo assembly

Alkaligrass is a tufted perennial halophyte in the genus
Puccinellia, which consists of species with diverse mor-
phology features and genome sizes (Murray et al., 2005;
Koce et al., 2008). The identity of alkaligrass was confirmed
by checking its morphology and taxonomy characteristics
under stereo microscope (Figure S1 in Supporting Informa-
tion). The nuclear genome size of alkaligrass was estimated
to be ~1.5 gigabase (Gb) using flow cytometry (Figure S2,
Table S1 in Supporting Information). We sequenced the
genome of alkaligrass using both Illumina HiSeq X-Ten
sequencing platform and PacBio single-molecule real-time
(SMRT) sequencing technology. In total, ~119 Gb PacBio
reads (equivalent to ~80× genome coverage) and ∼101 Gb
Illumina reads were used to assemble the genome. Analysis
of 17-mer sequences revealed a high level of heterozygosity
of the alkaligrass genome (1.64%) (Figure S3, Table S2 in
Supporting Information); therefore, we also used the genome
sequence of Aegilops tauschii (2n=14; a closely related
species of alkaligrass) to remove potential heterozygous
contig sequences using ALLMAPS (Tang et al., 2015).
Afterwards, the remaining contigs were assembled into
scaffolds by ARKS (Coombe et al., 2018) and LINKS
(Warren et al., 2015) using 10× Genomics data, and finally a
total of 1,715 scaffolds were generated with a total size of
1.50 and an N50 size of 1.46 Mb (Table S3 in Supporting
Information).
To assemble the scaffolds into pseudochromosomes, a

chromosome conformation capture (Hi-C) library was
constructed and sequenced, resulting in 275.2 Gb (184-
fold) raw data. Using the Hi-C data, the assembled scaffolds
were successfully clustered into seven groups correspond-
ing to the seven alkaligrass chromosomes (see Figure S4 for
Hi-C contact matrix and Figure S5 for the assembly
workflow). The lengths of the pseudochromosomes ranged
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from 163 to 258 Mb (Table S4 in Supporting Information).
The assembled sizes were slightly larger than the estimated
genome size of alkaligrass, probably due to the relatively
high heterozygosity of the alkaligrass genome. Read cov-
erage statistics showed that ~97.81% of Illumina short-in-
sert reads could be aligned back to the final assembly,
covering 94.86% of the assembly (Table S5 in Supporting
Information). The assembled genome was further evaluated
by BUSCO (Benchmarking Universal Single Copy Ortho-
logs; Simão et al., 2015), indicating that 92.9% of the core
conserved plant genes were completely captured in the
assembly (Table S6 in Supporting Information). These
metrics indicated the high quality of the alkaligrass genome
assembly.

Genome annotation

De novo screening of repetitive sequences revealed an
overall repeat content of ~65.37% in the alkaligrass genome
(Table S7 in Supporting Information), of which ∼84% are
transposable elements (TEs). The retrotransposons (class I
elements) constituted 45.34% of the genome, with 42.76%
being long terminal repeats (LTRs; 30.79% gypsy-type and
11.97% copia-type) and 2.39% non-long terminal repeats
(non-LTRs; 2.33% LINE and 0.06% SINE). Hence, LTR-
retrotransposons were the most abundant elements in the
alkaligrass genome, the same as those in most plant gen-
omes. The ratio of gypsy-like LTRs to copia-like LTRs was
2.57, similar to that found in other species in Pooideae, a
subfamily of the BOP clade in Gramineae (Table S8 in
Supporting Information). To assess the evolutionary role of
TEs, it is important to estimate when the TEs were integrated
into the genome. We estimated that the majority of intact
LTRs were amplified 0 to 0.5 million years ago (Mya) in the
alkaligrass genome (Figure S6A in Supporting Information).
The majority of LTRs in alkaligrass appeared to insert into
the genome more recently when compared to other Triticeae
species.
Furthermore, protein-coding genes were predicted in the

alkaligrass genome assembly using a combination of ab in-
itio prediction, homology search, and transcript mapping.
The hybrid gene prediction approach generated 38,387 gene
models in the alkaligrass genome, with an average gene
length of 4,065 bp, an average coding sequence (CDS)
length of 1,142 bp, and an average of 5 exons per gene.
Among these predicted genes, 30,781 (93.1%) were homo-
logs of Arabidopsis thaliana genes (Table S9 in Supporting
Information), and 34,119 (92.5%) had functional annotation
information (Table S10 in Supporting Information). Across
the alkaligrass genome the gene density ranged from 0 to 57
genes per million bases (Mb) (Figure 1), and as expected the
density of protein-coding genes generally showed an oppo-
site pattern to that of the repetitive elements.

Evolutionary history of alkaligrass

To infer the phylogeny for alkaligrass, protein sequences of
10 species from the PACMAD clade (Cenchrus americanus,
Setaria italic, Sorghum bicolor and Zea mays) and the BOP
clade (Oryza sativa, Brachypodium distachyon, Puccinellia
tenuiflora, Aegilops tauschii, Triticum urartu and Hordeum
vulgare) in monocots, as well as two eudicots (Arabidopsis
thaliana and Glycine max), were compared. Based on the
102 single-copy orthologous genes identified, we con-
structed a phylogenetic tree of these 12 plant species (Figure
2A). The divergence between the PACMAD clade and the
BOP clade was estimated to occur ~47 Mya, in congruence
with the previous report (International Brachypodium In-
itiative, 2010).
We further investigated whether any whole genome du-

plication (WGD) events have occurred during alkaligrass
evolution. We identified 19,511 paralogous gene pairs that
covered 50.8% of the alkaligrass genome assembly, includ-
ing 11,225 inter-chromosomal paralogous gene pairs. We
used synonymous substitution rate (Ks) values of the inter-
chromosomal paralogous gene pairs to calculate the age
distribution of the duplication events and identified two
peaks at Ks of ~0.06 and ~0.80. We then performed the same
analysis using the genome data of other five BOP species to
determine whether these WGD events in alkaligrass were
species-specific or shared with others. The result showed that
Ks of ~0.80 peak was shared in all Poaceae species (Figure
2B), suggesting that alkaligrass underwent the sameWGD in
the ancestor of Poaceae species, about 65.5 Mya. Mean-
while, the Ks of ~0.06 weak peak observed in alkaligrass and
H. vulgare, obscured in A. tauschii and O. sativa, dis-
sappered in T. urartu and B. distachyon was not considered
as alkaligrass-specific WGD, possibly due to imperfections
in gene annotation or retro-transposon genes in these gen-
omes, which needs to be investigated in details in future
study.
Based on the collinear blocks between the genomes of

alkaligrass and three Triticeae species, as well as O. sativa
and C. americanus, we calculated the density distribution of
the Ks values for the paired genes within each syntenic
genomic block (Figure 2C; Table S11 in Supporting In-
formation). The peak of Ks was ~0.5 for orthologous gene
pairs between alkaligrass and rice and ~0.6 between alkali-
grass and C. americanus, indicating that the more ancient
WGD event occurred before the divergence of the PACMAD
clade and the BOP clade.

Comparative genomics analysis

To investigate gene family expansion in alkaligrass, we
compared proteomes of alkaligrass and 12 other plants, and
identified a total of 21,803 orthologous gene families that
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consist of 340,014 genes, with 5,947 orthogroups containing
proteins from all species. All Gramineae species included in
the analysis shared 719 single-copy and 1,075 multiple-copy
orthogroups (Figure 3A). In total, 6,691 gene families were
expanded in alkaligrass, whereas 5,059 were contracted
(Figure 3A). Compared to other BOP clade species, much
more gene families were expanded in alkaligrass. The ex-
panded gene families in alkaligrass were mainly enriched in
functional categories such as binding (GO: 0005488) and
protein binding (GO: 0005515), suggesting possible roles in
relation to transcription or translation (Figure 3B). In addi-
tion, the most expanded family was the F-box/FBD/LRR-
repeat protein which implies improved resistance to stress in
alkaligrass (Figure S7 in Supporting Information).
By comparing alkaligrass with five other BOP species

including B. distachyon, A. tauschii, rice, T. urartu and
barley, we found that 58.3% (8,006/13,726) of the gene fa-
milies in alkaligrass were shared by all these six species,

while only 1.2% (159) were specific to alkaligrass covering
257 genes (Figure 3C). Among the genes in alkaligrass
specific families, 146 were annotated to have Arabidopsis
homologs, and most proteins encoded by those genes were
located in plasma membrane and endomembrane system,
implying that saline-alkali sensing, signal transduction, ion
transport, vesicular trafficking and cell structure dynamics
would be crucial for alkaligrass salinity tolerance.
A number of synteny blocks were detected within the

genome of the alkaligrass and between genomes of alkali-
grass and other species (Table S11 in Supporting Informa-
tion; Figure 1). In total, 832 and 822 synteny blocks with an
average size of 1.77 and 1.35 Mb were identified in alkali-
grass when compared with rice and T. urartu genomes, re-
spectively (Table S11 in Supporting Information). Synteny
blocks between alkaligrass and T. urartu genomes showed
that approximately one third of the genes (12,201) in alka-
ligrass had collinear relationships with T. urartu genes

Figure 1 Landscape of the alkaligrass genome. Circos plot of the alkaligrass genome assembly. Circles from the outside inwards: (a) pseudochromosomes,
(b) gene density, (c) LTR/Gypsy density, (d) LTR/Copia density, and (e) GC content. These density metrics were calculated with 1 Mb sliding windows.
Genome syntenic blocks are illustrated with colored lines.
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(Figure S8 in Supporting Information). Despite highly col-
linear relationship, several inversion and transposition events

were observed between the genomes of alkaligrass and
T. urartu (e.g., those for Pte_chr4-Tur_chr7, Pte_chr2-

Figure 2 Evolution of the alkaligrass genome. A, Phylogenetic tree of 12 species constructed based on 102 single-copy genes, with A. thaliana as the
outgroup. Divergence times were estimated using the divergence time of monocot-dicot (140–150 Mya) as the calibration point. Blue bars on the nodes are
the estimated range of divergence times (Mya). B, Distribution of synonymous substitution rates (Ks) among collinear paralogs in six BOP plants. C,
Frequency distributions of Ks of collinear orthologs among four BOP plants (A. tauschii, T. urartu, H. vulgare, and O. sativa), one PACMAD plant (C.
americanus) and alkaligrass.
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Tur_chr6, Pte_chr5-Tur_chr1, and Pte_chr6-Tur_chr3)
(Figure S9 in Supporting Information). Chromosome-scale
rearrangements were also observed between alkaligrass and
rice. For example, alkaligrass chromosome 3 seems to cor-
respond to a fusion of rice chromosomes 4 and 7 (Figure S9A
in Supporting Information).

Genome-wide saline-alkali response revealed from
transcriptome analysis

To examine the genome-wide response to saline-alkali stress
in alkaligrass, we performed a series of deep transcriptome
sequencing of 50-day seedlings under NaCl, Na2CO3, and
NaHCO3 treatments (Table S12 in Supporting Information),
using the Illumina sequencing platform. We analyzed the
expression profiles in roots and leaves in response to various
levels of salinity and alkali stresses (Figure 4A). Hierarchical
clustering of all samples using Pearson’s correlation based
on FPKM values showed a high correlation within root or
leaf samples, but poor correlation between root and leaf
samples. The expression levels of two representative NaCl-
responsive genes (PutANN1 and PutBIK1) were evaluated by
the RT-qPCR analysis (Figure 4B). PutANN1 and PutBIK1
encoded a calcium-dependent annexin and a plasma mem-
brane-localized Ser/Thr protein kinase, respectively. Both
genes were significantly induced by NaCl in roots when
compared with those in leaves of alkaligrass, which implied
their important roles in roots for saline-alkaline sensing and
signaling (Wang et al., 2015; Zhang et al., 2016).
The transcriptomic data revealed that genes encoding re-

ceptor-like kinase FER and FLS2, as well as their partners,
were induced by saline/alkali in the roots of alkaligrass
(Figure 4C). Genes that encode FER and its relative HERK1,
as well as their interacting proteins (i.e., LLG1, RALF1,
LRX2, AGB1, and ROPGEF1) were up-regulated in roots
for sensing and triggering certain saline-/alkali-responses.
The downstream members (i.e., GTPROP5, ABI2, and
SnRK2.2) in the ABA signaling were also induced in roots
under salinity and alkaline stresses. Moreover, genes en-
coding FLS2 and its interacting proteins (i.e., EFR, BAK1,
BIK1, SCD1, BSK1, and GRP7) were all regulated by saline/
alkali in roots. Additionally, genes that encode ROS-gener-
ated protein Rboh A/B/E/J, diverse ROS-mediated proteins
in kinase signaling pathways (i.e., MEKK1, MKK1/2/4/5,
and MPK3/4), proteins in Ca2+ signaling pathway (ANN1
and NORTIA), as well as transcription factors WRKY22/25/
29, were detected to be up-regulated in response to saline-
alkali stress (Figure 4C). Among them, two representative
NaCl-induced genes, PutMEKK and PutFLS2, were eval-
uated and confirmed by the RT-qPCR analysis (Figure 4D).
In addition, four FER orthologs were identified in alkali-

grass, while only one existed in the Arabidopsis genome.
RNA-Seq data showed that the four FER homologs exhibited

consistent expression pattern in roots in response to salinity
(Figure 4E). The diverse expression levels of FERs were
probably due to the sequence divergence in their promoters,
with identity of sequences 1 kb upstream of transcriptional
start site of these four FER copies ranging from 41% to 47%.
As difference in cis-elements is an important factor to in-
fluence expression levels, the cis-elements in the promoter
sequences of the four FERs identified with FIMO (Grant et
al., 2011) may be potential targets for genome editing to fine-
tune the expression levels and improve salinity stress re-
sistance (Supplemental file 2 in Supporting Information).

DISCUSSION

High-quality genome is necessary for molecular genetic
studies in alkaligrass

The saline-alkali soil mainly contains diverse salinity and
alkali contents such as NaCl, Na2CO3, NaHCO3, Na2SO4 and
NaOH, which inhibit plant development and growth (Wang
et al., 2007). Alkaligrass (P. tenuiflora) has strong tolerance
to saline, alkali, drought, and chilling stresses (Zhang et al.,
2013), and can grow normally under 600 mmol L–1 NaCl and
150 mmol L–1 Na2CO3 (pH 11.0) for 6 days (Zhang et al.,
2013), as well as under 800 mmol L–1 NaHCO3 (pH 9.0) for
7 days (Yin et al., 2019), showing greater tolerance than rice
(maximum of 40 mmol L–1 Na2CO3 or 100 mmol L

–1 NaCl
for 10 days) and barley (maximum of 250 mmol L–1 NaCl)
(Lv et al., 2013; Colmer et al., 2005). Previous studies have
focused on salinity-responsive mechanisms in alkaligrass
owing to its extreme salinity tolerance and high value for
cereal genetic improvement. However, due to the lack of
genome information, transcriptome and proteome studies are
mainly dependent on the genome databases of other related
plants, and the identification of interesting trait-associated
genes and proteins could be very imprecise (Yu et al., 2011;
Yu et al., 2013; Zhang et al., 2013; Zhao et al., 2016; Meng et
al., 2016; Yin et al., 2019; Suo et al., 2019). In this study, we
generated high-quality genome and transcriptome data for
alkaligrass, which provide a fundamental resource for alka-
ligrass functional genomic studies, and for facilitating ge-
netic mapping of various traits in alkaligrass. The detailed
information of genome structure, gene annotation and gene
expression provide valuable candidate genes in the QTL
regions, which will contribute to genome editing and genetic
complementation experiments, and other molecular genetic
analyses. This would be helpful in molecular breeding for
improving crops with higher yield and stress tolerance.

Receptor kinase FER and FLS2 are involved in salinity
response in alkaligrass

It has been well addressed that plasma membrane-localized
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Figure 4 Salt-responsive genes and pathways in alkaligrass. A, Visualization of correlation matrix of root (R) and leaf (L) samples under the treatments of
Na2CO3, NaHCO3, and NaCl for 0.5 h, 6 h and 7 d, based on gene expression profiles. B, Relative expression levels of PutANN1 and PutBIK in root and leaf
under NaCl treatment evaluated by RT-qPCR analysis. C, Receptor-like kinase FER and FLS2 related pathways in roots were involved in salinity and alkali
tolerance. Transcriptome profiling revealed that FER and HERK1, as well as their interacting protein encoding genes (LLG1, RALF1, LRX2, AGB1, and
ROPGEF1) were induced by saline-alkaline. The downstream members (i.e., GTPROP5, ABI2, and SnRK2.2) in ABA signaling were also up-regulated
under certain stress conditions. FLS2 and its related genes (EFR, BAK1, BIK1, SCD1, BSK1, and GRP7) were all up-regulated. In addition, genes encoding
ROS-generated protein Rboh A/B/E/J, as well as the members of kinase signaling (MEKK1, MKK1/2/4/5, and MPK3/4), Ca2+ signaling (ANN1 and
NORTIA), and transcription factors WRKY22/25/29 were conditionally up-regulated in response to saline-alkaline stress. D, Relative expression levels of
PutMEKK and PutFLS2 in root under NaCl treatment. E, Expression profiles of four alkaligrass FER homologs in root under different treatments. R2 in B and
D represents the correlation values between the real-time PCR and RNA-Seq data. See Supplemental file 1 in Supporting Information for gene abbreviations.
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FER receptor kinase and its downstream partners control
plant reproduction, growth, and development, as well as
participate in defense-related responses (Li et al., 2015).
However, limited evidence is available to support that FERs
are involved in salinity response. Arabidopsis FER interacts
with RALF22/23 and leucine-rich repeat extensins (LRX),
functioning as a module to transduce cell-wall signals, and to
elicit cell-specific calcium transients for maintaining cell
wall integrity in response to salt stress (Zhao et al., 2018;
Feng et al., 2018). Arabidopsis FER also interacts with G
protein beta subunit (AGB1) and RALF1 to regulate sto-
matal movement and salinity response (Yu and Assmann,
2018). Furthermore, FLS2 interacts with other downstream
proteins to modulate immunity response (Shen et al., 2017).
Importantly, Arabidopsis LLG1 works as a co-receptor of
FER and FLS2, participating in the regulation of develop-
ment and innate immunity in plants (Shen et al., 2017).
However, whether these well-known development and im-
munity-related genes are involved in salinity response in
halophytes remains unclear. Our results revealed that four
PutFERs and a large number of genes in FER and FLS
signaling pathways were induced by salinity/alkali in roots
of alkaligrass (Figure 4D). This implies that FER and its
related genes (i.e., HERK1, NOTIA, and MARIS), as well as
FLS2 and its interacted partners (i.e., BAK1, EFR, BIK1,
SCD1, BSK1, and GRP7) synergistically modulate G pro-
tein-mediated Ca2+ signaling, ABA signaling, ROS home-
ostasis and MAPK cascade signaling to regulate salt-
responsive gene expression. Functions of these candidate
genes in salt responses need to be further validated and in-
vestigated by molecular genetics and biochemical analyses.

CONCLUSION

The halophytic alkaligrass (P. tenuiflora) is an outstanding
pasture for soil improvement. Its genome assembly allows us
to draw the complete catalog of genes for underlying saline-
alkaline tolerant mechanisms in monocots, and also provides
a crucial basis for understanding salinity adaptation of pas-
ture and facilitating the molecular genetic improvement of
crops.

MATERIALS AND METHODS

Plant materials and growth conditions

Alkaligrass seedlings were cultured in a modified Hoagland
solution in a chamber under fluorescent light
(300 μmol m–2 s–1, 13 h light/11 h darkness) at 25°C and
75% humidity for 50 days (Yu et al., 2011). For tran-
scriptome analysis, the plants were treated with 50 mmol L–1

Na2CO3, 100 mmol L
–1 NaCl, and 100 mmol L–1 NaHCO3

(pH 9) for 0.5 h, 6 h, and 7 d, respectively. After treatment,
leaves and roots were harvested, frozen immediately in li-
quid nitrogen and stored at –80°C.

Genome size estimation

The genome size of alkaligrass was estimated using flow
cytometry as described in Dolezel et al. (2007). Samples
were prepared by homogenizing young leaves of H. vulgare
cv. Morex, which has a genome size of 5.1 Gb (Mayer et al.,
2012) and was used as an internal standard, and four in-
dependent individuals of alkaligrass on ice in Galbraith’s
buffer (5 mmol L–1 sodium metabi-sulfite and 5 μL β-mer-
captoethanol complemented) with 50 μg mL–1 propidium
iodide. After filtration with 40 μm nylon cell strainer (Fal-
con, BD Biosciences, San Jose, CA, USA), samples were
analyzed on a MoFlo XDP Cell Sorter (excitation 488 nm,
emission 620 nm; Beckman Coulter, Hialeah, FL, USA). The
flow cytometry data were analyzed with the FlowJo software
(version 10.6.1; FlowJo LLC, Ashland, OR, USA).

Genome assembly

Genomic DNAwas extracted from leaf tissues of alkaligrass
(basic plant characteristics shown in Figure S1 in Supporting
Information) using the cetyltrimethylammonium bromide
(CTAB) method. Paired-end (PE) library with insert size
around 400 bp was constructed according to the manu-
facturer’s instructions (Illumina, San Diego, CA, USA) and
sequenced on an Illumina HiSeq X-ten system. PacBio
SMRT libraries were constructed following the standard
SMRT bell construction protocol and sequenced on an RS II
platform (PacBio, Menlo Park, CA, USA).
PacBio long reads were error corrected using Falcon

(length_cutoff=15,000, length_cutoff_pr=16,000, pa_HPC-
daligner_option=‘-v -B100 -t12 -w8 -M24 -e.70 -k18 -h280
-l2800 -s1000’, ovlp_HPCdaligner_option=‘-v -B120 -k20
-h480 -e.96 -l2800 -s1000 -T8’). De novo assembly of al-
kaligrass genome was performed with the error-corrected
PacBio reads using wtdbg (wtdbg-1.2.8 -k 0 -p 17 -S 2;
wtdbg-cns -j 500 -c 0 -k 7) (v1.8.7; Chin et al., 2016). Arrow
(smrtlink5.1.0; Chin et al., 2013) and Pilon (v1.22; Walker et
al., 2014) were employed to polish the assembly using
PacBio and Illumina reads. The redundancy in the polished
contig sequences were removed based on gene synteny
compared with the genome of Aegilops tauschii (a closely
related species of alkaligrass) using ALLMAPS (v0.8.12;
Tang et al., 2015). 10× Genomics data was used to scaffold
the assembled contigs using the ARKS-LINKS pipeline with
the parameters of ARKS (Coombe et al., 2018) set to ‘-c 5 -j
0.55 -m 50-10000 -k 30 -r 0.05 -e 3000 -z 500 -d 0’ and the
parameters of LINKS (Warren et al., 2015) set to ‘-l 5 –a 0.9
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-z 500’. Based on high-throughput chromosome conforma-
tion capture (Hi-C) data, scaffolds were anchored to seven
pseudo-molecules using LACHESIS (Burton et al., 2013)
with parameters ‘CLUSTER MIN RE SITES=100; CLUS-
TER MAX LINK DENSITY=2.5; CLUSTER NON-
INFORMATIVE RATIO=1.4; ORDER MIN N RES IN
TRUNK=60; ORDER MIN N RES IN SHREDS=60’.

Genome annotation

A custom repeat library was built by screening the alkali-
grass genome assembly using RepeatModeler (version open-
1.0.11) (Tarailo-Graovac and Chen, 2009) (http://re-
peatmasker.org/). RepeatMasker (V4.0.7) was used to mask
and classify repeat sequences in the genome. LTR-RTs were
first annotated using LTR harvest (genome tools V1.5.11;
Ellinghaus et al., 2008), LTR_FINDER (V1.07; Xu and
Wang, 2007), and LTR_FINDER_parallel (Ou and Jiang,
2019). The intact LTR-RTs and the insertion time were then
refined and estimated by LTR retriever (V2.1; Ou and Jiang,
2018) and plotted using ggplot in Rstudio1.1.383.
A hybrid strategy combining ab initio predictions, homo-

logous gene evidence, and transcript support (RNA-Seq) was
applied in gene predictions. Four ab initio gene finders,
GeneMark-ET (V4.46) (Lomsadze et al., 2014), Augustus
(V3.3.2) (Stanke et al., 2006), Fgenesh (version) (Salamov
and Solovyev, 2000), and SNAP (version 2006-07-28) (Korf,
2004) were used. RNA-Seq reads generated from five tissues
(spike, leaf, flower, stem, and root), as well as salt-treated
samples, were de novo assembled using Trinity (Grabherr et
al., 2011). Protein sequences of A. tauschii, T. urartu, and H.
vulgare were used to obtain homology evidence supporting
the predicted gene structures. All gene structures predicted
by the above procedures were integrated into consensus gene
models using MAKER (V3.1.2) (Holt and Yandell, 2011).
Protein domains were identified by comparing protein

sequences of alkaligrass predicted genes against various
domain databases using InterProScan v5 (Jones et al., 2014).
Gene ontology (GO) terms were assigned for each gene
based on its corresponding InterPro entries. Functional an-
notation of protein-coding genes was achieved using
BLASTp (E-value<1×10–5) against the Arabidopsis thaliana
protein sequence database.

Phylogenetic tree construction

The protein sequences from A. thaliana, rice, S. bicolor, Z.
mays, S. italica, B. distachyon, H. vulgare, T. urartu, A.
tauschii, C. americanus, and G. max were downloaded from
Ensembl (http://ensemblgenomes.org/info/genomes) and
GigaDB (http://gigadb.org/). For genes with multiple tran-
scripts, only the longest transcripts in the coding region were
included in the analysis. OrthoFinder (V2.2.7) (Emms and

Kelly, 2015) was used to identify paralogs and orthologs
with an all-vs-all BLASTp search performed by Diamond
(V0.9.23) (Buchfink et al., 2015). Single-copy orthologs
were used to construct the phylogenetic tree of all tested
species with MAFFT (V7.419) (Katoh et al., 2002) and
RAXML (V8.2.12; parameters ‘-m PROTGAMMAAUTO
-nb 100’) (Stamatakis, 2014) using the EasySpeciesTree
python script (https://github.com/Davey1220/Easy-
SpeciesTree). Finally, the phylogeny tree was visualized
using Figtree (V1.4.4) (Rambaut, 2009).

Species divergence time estimation

The MCMCTree program (http://abacus.gene.ucl.ac.uk/
software/paml.html) implemented in Phylogenetic Analysis
with Maximum Likelihood (PAML; V4.9i) was used to infer
the divergence time of the nodes on the phylogenetic tree.
Parameters used for MCMCTree were as follows: a burn-in
of 2,000 steps, sample number of 20,000 and sample fre-
quency of 10. Normal prior was used for monocot-dicot di-
vergence time (140–150 Mya). The divergence time was also
calculated using the formula T =Ks/2R, where Ks refers to the
synonymous substitutions per site, and R is the rate of di-
vergence of nuclear genes in plants, which was set to 6.1×10–9

according to Lynch and Conery (2000).

Expansion and contraction of gene families

The expansion and contraction of gene families were de-
termined by comparing the cluster size differences between
the ancestor and each species using the CAFE (V4.2.1)
program (Han et al., 2013). A random birth-and-death model
was used to evaluate changes in gene families along each
lineage of the phylogenetic tree. Using conditional likelihood
as the test statistics, we calculated the corresponding P-va-
lues of each lineage, and a P-value ≤0.01 was considered
significant.

Comparative genomic analysis

The alkaligrass genome was compared to genomes of itself
and other species using the MCScan toolkit (Tang et al.,
2008). To call synteny blocks, we performed all-against-all
LAST (Kiełbasa et al., 2011) and chained the LAST hits with
a distance cutoff of 20 genes, requiring at least five gene
pairs per synteny block. Chromosome-scale synteny block
plots were constructed using the python version of MCScan.
For each gene pair in a syntenic block, Ks values were cal-
culated, and values of all gene pairs were plotted to identify
putative whole-genome duplication events in alkaligrass and
other BOP species. The syntenic blocks between alkaligrass
chromosomes were visualized using Circos (V0.69-6;
Krzywinski et al., 2009).
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RNA-Seq library construction and data analysis

Paired-end RNA-Seq libraries were constructed using the
NEB Next® Ultra RNA Library Prep Kit (Illumina). cDNA
fragments of ~300 bp in size were excised, followed by en-
richments using PCR amplification for ~10 cycles. The re-
sulting paired-end RNA-Seq libraries were sequenced on the
Illumina NovaSeq 6000 system to generate 150 bp paired-
end reads. RNA-Seq reads were aligned against the alkali-
grass genome using HISAT2 (V2.1.0; Kim et al., 2015). The
expression level (FPKM) for each protein-coding gene was
calculated using Stringtie (V1.3.5; Pertea et al., 2015) with
default parameters. All primers used for qRT-PCR are listed
in Supplemental file 3 in Supporting Information.

Data availability

The assembled alkaligrass genome has been deposited in
BIGD under Bioproject number PRJCA002121. The genome
assembly and gene annotations of alkaligrass can also be
accessed from http://www.xhhuanglab.cn/data/alkaligrass.
html.
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