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Abstract 

Rice is one of the most important food crops in Asia. Genetic analyses of complex traits and molecular breeding stud-
ies in rice greatly rely on the construction of various genetic populations. Chromosome segment substitution lines 
(CSSLs) serve as a powerful genetic population for quantitative trait locus (QTL) mapping in rice. Moreover, CSSLs con-
taining target genomic regions can be used as improved varieties in rice breeding.  In this study, we developed a set 
of CSSLs consisting of 117 lines derived from the recipient ‘Huanghuazhan’ (HHZ) and the donor ‘Basmati Surkb 89–15’ 
(BAS). The 117 lines were extensively genotyped by whole-genome resequencing, and a high-density genotype map 
was constructed for the CSSL population. The 117 CSSLs covered 99.78% of the BAS genome. Each line contained 
a single segment, and the average segment length was 6.02 Mb. Using the CSSL population, we investigated three 
agronomic traits in Shanghai and Hangzhou, China, and a total of 25 QTLs were detected in both environments. 
Among those QTLs, we found that RFT1 was the causal gene for heading date variance between HHZ and BAS. RFT1 
from BAS was found to contain a loss-of-function allele based on yeast two-hybrid assay, and its causal variation was 
a P to S change in the 94th amino acid of the RFT1 protein.  The combination of high-throughput genotyping and 
marker-assisted selection (MAS) is a highly efficient way to construct CSSLs in rice, and extensively genotyped CSSLs 
will be a powerful tool for the genetic mapping of agronomic traits and molecular breeding for target QTLs/genes.
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Background
Rice is an important food crop, and its high and stable 
yield is related to global food security. Many agronomic 
traits in rice, such as heading date, tiller number, plant 
height and disease resistance, are related to rice produc-
tion, and these complex traits are controlled by many 
QTLs (Glazier et  al. 2002). Five QTLs for heading date, 
namely, Hd1, Hd2, Hd3, Hd4 and Hd5, were found in an 
F2 population derived from a Nipponbare and Kasalath 

cross (Yano et al. 1997). Through fine mapping, the rice 
Hd1 gene (homolog of CONSTANS in Arabidopsis) was 
finally cloned and validated (Yano et  al. 2000). In addi-
tion to heading date, QTL mapping and cloning have 
also been used in traits controlling plant architecture and 
stress resistance. For example, the PROG1 gene, which is 
related to tiller angle and the number of tillers of rice (Jin 
et al. 2008; Tan et al. 2008), and Thermotolerance 1 (TT1) 
for thermotolerance (Li et al. 2015), have been mapped. 
Therefore, QTL mapping and gene cloning are accurate 
and effective methods to study functional genes (Price 
2006). To date, more than 225 QTLs have been cloned 
and functionally validated in rice (Salvi and Tuberosa 
2005).
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The mapping populations commonly used for QTL 
mapping include F2, F2:3, recombinant inbred lines 
(RILs), doubled haploid (DH), CSSLs, and others. As 
a stable mapping population, CSSLs have been widely 
used in QTL mapping and gene cloning. After the first 
application of CSSLs in tomato (Eshed and Zamir 1994, 
1995), this technique was immediately applied to rice 
research (Doi et al. 1997). In general, the development 
of CSSLs requires MAS to determine the genotype of 
the population and perform backcross breeding. Ide-
ally, each CSSL has a single, small minimal chromo-
some fragment from the donor, and all donor fragments 
collectively cover the entire genome of the donor (Bal-
akrishnan et al. 2019). However, to obtain a perfect set 
of CSSLs, high-density molecular markers are needed 
to identify the size of the introgressed fragment, but 
the PCR analysis of molecular markers often greatly 
increases the workload. High-throughput genotyping 
methods based on next-generation sequencing technol-
ogy can be used to draw high-resolution physical maps 
quickly, which can replace marker-based genotyping 
approaches and save many hours of laborious work 
(Huang et  al. 2009). Recently, many high-precision 
CSSLs have been constructed by using high-throughput 
genotyping technology (Zhang et  al. 2019; Zhu et  al. 
2015; Xu et al. 2010; Jiang et al. 2017). These high-qual-
ity CSSLs are helpful for analyzing traits and cloning 
candidate genes.

Flowering is the hallmark of the transition from veg-
etative growth to reproductive growth (Arteca 1996). 
For rice, flowering time (called heading date in rice) is 
directly related to yield. For example, Ghd7 (Xue et  al. 
2008), Ghd7.1/DTH7/OsPRR37 (Yan et  al. 2013; Gao 
et al. 2014; Koo et al. 2013) and Ghd8/DTH8 (Yan et al. 
2011; Wei et  al. 2010) simultaneously control three 
traits – grain yield, plant height, and heading date. In 
particular, florigen, as a key protein encoded by the 
FLOWERING LOCUS T (FT) gene, is directly related to 
flowering in plants; it is produced in the phloem of leaves 
and transferred to the shoot apical meristem (SAM) to 
induce flowering (Tsuji 2017; Turck et  al. 2008; Tamaki 
et al. 2007). In rice, Hd3a and RFT1 are orthologs of the 
A. thaliana florigen FT, with high sequence similarity 
(Komiya et al. 2008; Kojima et al. 2002). Previous studies 
have found that the 14-3-3 protein of the florigen recep-
tor mediates the interaction of Hd3a and the transcrip-
tion factor OsFD1 to form a triple-structured "florigen 
activation complex (FAC)" that activates the expression 
of the downstream genes OsMADS14 and OsMADS15 
to induce rice heading (Taoka et  al. 2011; Tamaki et  al. 
2015). Interestingly, RFT1 also interacts with the 14-3-3 
protein, and nonfunctional RFT1 with the E105K muta-
tion fails to interact with the 14-3-3 protein (Zhao et al. 

2015). However, it is unclear whether other mutated sites 
in RFT1 can affect its interaction with the 14-3-3 protein.

Here, we constructed a set of CSSLs derived from the 
indica cultivar ‘Huanghuazhan’ (HHZ, a high-quality rice 
variety widely cultivated in China) and ‘Basmati Surkb 
89–15’ (BAS, an aromatic rice variety from Pakistan). The 
variety HHZ was used as the recipient parent, and BAS 
was used as the donor parent. A total of 117 CSSLs were 
constructed by a combination of MAS and high-through-
put genotyping based on whole-genome sequencing. 
QTLs for heading date, plant height and panicle length 
were analyzed using the CSSLs, and the biological func-
tion of RFT1 in BAS, which contained a P94S mutation, 
was verified.

Results
Development of the CSSLs
The development process of the CSSLs is shown in Fig. 1. 
F1 plants were obtained in cross between HHZ and 
BAS. The F1 plants were backcrossed once with HHZ 
to produce the BC1F1 generation. A total of 184 plants 
screened from the BC1F1 population were backcrossed 
to produce the BC2F1 generation. Then, 79 plants were 
backcrossed to produce the BC3F1 generation. Further-
more, 57 plants were screened from the BC3F1 popula-
tion and backcrossed to create the BC4F1 generation, 
and 64 plants were screened from the BC4F1 popula-
tion and backcrossed to create the BC5F1 generation. In 
each generation, plants that had heterozygous genotypes 
on one chromosome and the remaining genetic back-
ground homozygous for HHZ genotypes were chosen. 
In addition, heterozygous fragments of those selected 
plants could cover whole chromosomes. The genotypes 
of BCn(1–4)F1 plants were determined by whole-genome 
resequencing. The genotypes of BC5F1 plants were deter-
mined by MAS. A total of 107 plants, including 19 BC3F1 
plants, 21 BC4F1 plants and 67 BC5F1 plants with a het-
erozygous substituted segment, were self-pollinated to 
produce BC3F2, BC4F2 and BC5F2 populations, respec-
tively. Thirty-three plants with small segment substitu-
tions (approximately 5  Mb), including 19 BC3F2 plants 
and 14 BC4F2 plants selected by MAS, were self-polli-
nated to obtain 33 CSSLs. Then, 7 BC4F1 plants and 67 
BC5F1 plants were self-pollinated to obtain 84 CSSLs, and 
the 84 CSSLs were subjected to another round of high-
throughput genotyping by whole-genome resequencing. 
Finally, a linkage map was constructed for the 117 CSSLs.

In addition to whole-genome sequencing, we also 
developed a set of PCR-based markers for genotyping 
and gene pyramiding in the future. Based on the com-
parison of the HHZ and BAS genome assemblies (data 
not shown), we developed 396 InDel (insertion-deletion) 
markers for the construction of CSSLs that were evenly 
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distributed on the 12 rice chromosomes (Additional 
file  1: Fig. S1). The average interval between two adja-
cent markers on the physical map was 0.94  Mb (Addi-
tional file 2: Table S1). The primer sequence information 
for the markers used in this study is shown in Additional 
file 3: Table S2. Both PCR genotyping and whole-genome 
sequencing were applied to BC5F1 plants. The genotyping 
results from the 396 markers were consistent with those 
from whole-genome resequencing.

Characteristics of the CSSLs
An accurate physical map of the 117 CSSLs was con-
structed according to SEG-Map (Zhao et  al. 2010) with 
Os-Nipponbare-Reference-IRGSP-1.0 (Kawahara et  al., 
2013; Sakai et al. 2013) as the reference genome (Fig. 2). 

The set of CSSLs contains 117 homozygous segments, 
and each line contains only one substituted segment. The 
average number of substituted segments was approxi-
mately 10 for each chromosome, ranging from 5 on chro-
mosome 12 to 18 on chromosome 4 (Table 1). Analysis of 
the length of the substituted segments showed that the 
total length of the substituted segments in the popula-
tion was 704.6 Mb, which is 1.89 times the total length of 
the rice genome; on average, each line carried 6.02 Mb of 
substituted material. The coverage rate of the substituted 
segments with redundancy removed was 99.78% of the 
BAS genome in the CSSL set. Except for chromosome 11 
and chromosome 1, which had 98.61% and 99.07% cover-
age rates, respectively, all of the other 10 chromosomes 
were fully covered. The size of the segments ranged from 
0 to 24 Mb (Fig. 3). Among those segments, the smallest 
segment is 0.1 Mb, which is on chromosome 11, and the 
largest one is 23.5  Mb on chromosome 3. Additionally, 
71.79% of the segments were shorter than 7  Mb, while 
15.38% were longer than 10 Mb. In particular, 10 CSSLs 
had a substituted segment of less than 1 Mb (Fig. 3).

QTL Analysis Using the CSSLs
Since self-pollinated CS004 plants failed to produce 
seeds, heading time (HD), plant height (PH) and pani-
cle length (PL) were investigated for 116 CSSLs and their 
parents in Shanghai and Hangzhou, China. The pheno-
typic values of the three traits had a normal or skewed 
distribution in both environments (Fig.  4). The average 
values for the CSSLs were close to the statistical data 
from HHZ, which was consistent with the genetic back-
ground of the CSSLs. Descriptive statistics are listed in 
Table 2. QTL IciMapping was used to analyze the QTLs 
for the specified agronomic traits in both Shanghai and 
Hangzhou (Table  3). A total of 25 QTLs were detected 
for those three traits and were distributed on 9 chromo-
somes, while no QTLs were found on chromosomes 2, 5, 
and 9 (Additional file 4: Fig. S2). Among the 25 QTLs, 9 
were detected from the data derived from Shanghai, and 
16 were detected from statistical data from Hangzhou; 4 
significant QTLs (qHD6-1, qHD8-1, qHD10-1, and qPH1-
1) were identified at both sites. Some QTLs were located 
in the same or adjacent chromosomal regions.

Heading Date
Under long-day (LD)  conditions, 15 QTLs associated 
with HD were detected on chromosomes 1, 4, 6, 7, 8, 
10, 11 and 12. Among them, 3 QTLs (qHD6-1, qHD8-
1, and qHD10-1) could be detected simultaneously in 
both planting environments. The phenotypic variation 
explained by individual QTLs was between 1.7 and 
52.3%. For 12 QTLs (qHD4-1, qHD4-2, qHD6-1, qHD7-
1, qHD7-2, qHD8-1, qHD10-1, qHD10-2, qHD11-1, 

Fig. 1  Flow charts of the 117 CSSLs constructed in this study. The red 
arrow represents lines genotyped by MAS. The blue arrow represents 
lines genotyped by HTG-WGS (High-Throughput Genotyping by 
Whole-Genome Resequencing). The green arrow represents lines 
genotyped by MAS and HTG-WGS. The black circle represents 
self-pollination
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qHD11-2, qHD12-1, and qHD12-3), the BAS alleles 
resulted in delayed heading, and for 3 QTLs (qHD1-1, 
qHD12-2, qHD12-4), the BAS alleles promoted head-
ing. Among these QTLs, qHD6-1 had the greatest 
impact on heading date and was located in the region 
from 1.0 to 3.0  Mb on chromosome 6 (Fig.  5), which 
contained two rice FT genes. Another site affecting the 
heading date, qHD8-1, was located between 3.9 and 
4.6 Mb on chromosome 8, and Ghd8 was supposed to 
be the causative gene. In addition, in the BC3F1 popu-
lation created during the CSSLs construction process, 

four QTLs (qHD1-1, qHD6-1, qHD8-1, qHD10-1) were 
also detected when cultivated in Shanghai in 2019 
(Additional file 5: Fig. S3).

Plant Height
Three QTLs associated with PH were detected on chro-
mosomes 1, 6 and 8. The phenotypic variance explained 
by individual QTLs varied from 3.6% to 71.7%. The QTL 
qPH1-1, for which the BAS genotype delayed head-
ing date, explained 71.7% of the phenotypical variation 
in Shanghai and was located in the region from 35.7 to 

Fig. 2  Bin-physical map of the 117 CSSLs constructed using molecular markers and whole-genome resequencing. Green and blue represent HHZ 
and BAS, respectively

Table 1  Distribution of substituted segments on 12 chromosomes

Chromosome Number of segments Segment length (Mb) Average length (Mb) Coverage length (Mb) Coverage 
rate (%)

1 16 96.1 6.00 42.8 99.07

2 8 54.1 6.76 35.8 100

3 15 103.7 6.91 36.3 100

4 18 98.6 5.48 35.4 100

5 6 41.6 6.93 29.9 100

6 9 44.2 4.91 31.1 100

7 7 45.5 6.50 29.6 100

8 9 55.0 6.11 28.3 100

9 9 38.9 4.32 22.9 100

10 7 38.8 5.54 23.1 100

11 8 50.2 6.28 28.0 98.61

12 5 37.9 7.58 27.4 100

Total 117 704.6 6.02 370.6 99.78
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Fig. 3  Distribution of the lengths of the substituted segments in the set of CSSLs

Table 2  Statistics of the three studied traits in BAS, HHZ and 116 CSSLs at the Shanghai and Hangzhou locations

SD standard deviation; CV coefficient of variation

Environment Trait BAS HHZ CSSLs

Mean SD CV(%) Range

Shanghai HD 123.4 91.7 91.5 4.9 5.3 84.6–114.7

PH 185.5 107.0 108.7 8.2 7.6 97.9–149.1

PL 30.2 27.2 27.3 1.0 3.5 24.2–29.3

Hangzhou HD 103.0 83.0 83.9 3.8 4.5 75.0–100.0

PH 190.0 107.0 107.1 7.3 6.8 93.5–136.5

PL 32.0 26.5 25.5 2.3 8.7 18.5–32.0

Fig. 4  Frequency distributions of the three traits in the CSSLs. The blue and orange rectangles represent the distribution of the three traits in the 
CSSLs at the Shanghai and Hangzhou locations, respectively. The vertical axis of each figure represents the number of CSSL individuals
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40.2  Mb on chromosome 1. This region contained the 
rice green revolution gene sd1. BAS alleles at qPH6-1 had 
positive effects on plant height in Shanghai, and this QTL 
was located at the same position as qHD6-1.

Panicle Length
Three QTLs associated with PL were detected on chro-
mosomes 3 and 10. The phenotypic variance explained 
by individual QTLs varied from 9.8% to 14.0%. The BAS 

Table 3  QTLs for the three traits detected in the set of CSSLs in Shanghai and Hangzhou

a The percentage of phenotypic variation explained (PVE) by the detected QTL; b Additive effects (Add), the positive value suggests that alleles from BAS increase the 
effect

Environment Trait QTL Chromosome Location (bin) Location (Mb) LOD PVE (%)a Addb Known QTL/gene

Shanghai HD qHD1-1 chr01 chr01_357 35.7–40.2 3.2 1.7 − 1.7 OsMADS51

Shanghai HD qHD4-2 chr04 chr04_196 18.5–22.0 14.1 9.3 3.4

Shanghai HD qHD6-1 chr06 chr06_10 1.0–3.0 41.7 52.3 11.2 Hd3a/RFT1

Shanghai HD qHD8-1 chr08 chr08_41 3.9–4.6 22.9 18.4 8.1 Ghd8

Shanghai HD qHD10-1 chr10 chr10_159 15.9–17.3 14.5 9.7 4.8 Ehd1

Shanghai PH qPH1-1 chr01 chr01_357 35.7–40.2 34.5 71.7 19.2 sd1

Shanghai PH qPH6-1 chr06 chr06_10 1.0–3.0 3.5 3.6 5.0 Hd3a/RFT1

Shanghai PL qPL3-2 chr03 chr03_243 24.3–26.5 3.8 12.5 − 0.9

Shanghai PL qPL10-1 chr10 chr10_174 15.9–19.0 3.0 9.8 − 1.2

Hangzhou HD qHD4-1 chr04 chr04_185 18.5–22.0 9.6 3.8 1.8

Hangzhou HD qHD6-1 chr06 chr06_10 1.0–3.0 49.7 50.5 8.5 Hd3a/RFT1

Hangzhou HD qHD7-1 chr07 chr07_0 0.0–5.1 10.9 4.4 4.3

Hangzhou HD qHD7-2 chr07 chr07_207 20.3–27.7 5.2 1.9 2.8

Hangzhou HD qHD8-1 chr08 chr08_41 3.9–4.6 18.4 8.8 4.3 Ghd8

Hangzhou HD qHD10-1 chr10 chr10_159 15.9–17.3 15.5 7.0 3.2 Ehd1

Hangzhou HD qHD10-2 chr10 chr10_195 19.5–22.3 5.2 1.9 2.0

Hangzhou HD qHD11-1 chr11 chr11_193 18.9–20.4 6.5 2.4 1.9

Hangzhou HD qHD11-2 chr11 chr11_288 28.8–28.9 6.5 2.4 1.9

Hangzhou HD qHD12-1 chr12 chr12_57 2.7–9.0 5.2 1.9 2.8

Hangzhou HD qHD12-2 chr12 chr12_91 8.0–20.4 15.8 7.2 − 5.5

Hangzhou HD qHD12-3 chr12 chr12_204 20.4–21.1 43.4 37.5 7.3

Hangzhou HD qHD12-4 chr12 chr12_212 21.1–27.4 11.6 4.8 − 4.5

Hangzhou PH qPH1-1 chr01 chr01_357 35.7–40.2 17.4 46.7 13.8 sd1

Hangzhou PH qPH8-1 chr08 chr08_238 22.6–28.3 3.1 6.2 5.7

Hangzhou PL qPL3-1 chr03 chr03_130 12.8–26.5 3.9 14.0 − 2.7

Fig. 5  The genomic interval found in the progeny homozygous for qHD6-1 delimited the locus to an ~ 2.0 Mb region. Different colors represent 
different genotypes: orange, HHZ; blue, BAS. Red dashed lines indicate the overlapping regions in different CSSLs. Heading date is shown for 
recombinant plants (CS065, CS066 and CS067) and the parental plants. Heading date values (in days) are shown as the means ± standard errors 
(n = 30)
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alleles for three QTLs had negative effects on panicle 
length. However, no shared QTLs were detected in the 
two sites.

Verification of the Biological Function of qHD6‑1
QTL analysis was carried out for heading date in this set 
of CSSLs, and qHD6-1 found on chromosome 6 had a 
noticeable effect on heading date. The interval of qHD6-
1 could be narrowed down to a region of 2.0 Mb, which 
was located from 1.0  Mb to 3.0  Mb on chromosome 6 
(Fig. 5). Considering that qHD6-1 is a major locus under-
lying heading date, we analyzed the candidate genes 
related to heading date in this region and preliminarily 
identified rice FT genes (Hd3a and RFT1) that may play 
a role in this locus.

Sequence variation analysis of the coding region and 
5  kb promoter of Hd3a and RFT1 showed that there 
was a 1 bp deletion in the Hd3a promoter of BAS (Addi-
tional file 6: Fig. S4), and in RFT1, there was a nonsyn-
onymous mutation in exon 3 (Fig.  6a). Compared with 
HHZ, RFT1-BAS has a unique amino acid substitution 
from Pro (P) to Ser (S) at position 94. Then, we analyzed 
the transcriptome data of 30-day-old seedling leaves 
and found that there was no difference in the expres-
sion of Hd3a between the two parents (data not shown). 
In recent studies, we collected quantitative trait gene 
(QTG) alleles of known QTLs and confirmed that the 
BAS alleles for Hd3a did not belong to the known QTG 
alleles (Wei et  al. 2021). According to previous studies, 
the Hd3a promoter types of BAS and HHZ did not cause 
differences in the expression of Hd3a (Takahashi et  al. 
2009). In addition, RFT1 played a major role in inducing 

rice flowering under LD conditions. Under these condi-
tions, the heading date of RFT1 RNAi plants was delayed 
by approximately 100  days compared with that of the 
wild type, whereas Hd3a RNAi plants basically flow-
ered at the same time as wild-type plants (Komiya et al. 
2009). Recently, hd3a and rft1 were targeted by CRISPR/
Cas9-mediated mutagenesis of Hd3a and RFT1. Under 
LD conditions, the heading date of rft1 mutants was sig-
nificantly delayed compared with that of wild-type plants 
(Liu et al. 2019; Song et al. 2017), while hd3a mutants did 
not display late-flowering phenotypes under those condi-
tions (Song et al. 2017). In summary, we speculated that 
the candidate gene at qHD6.1 was possibly RFT1 rather 
than Hd3a.

To verify the functionality of RFT1-BAS, we performed 
yeast two-hybrid assays to test the interaction between 
the proteins encoded by the different RFT1 alleles (HHZ 
and BAS) and 14-3-3 family proteins (Gf14a, Gf14b, 
Gf14c, Gf14d, Gf14e, and Gf14f ). We found that RFT1-
HHZ could interact with all the isoforms of GF14, while 
none of the GF14s interacted with RFT1-BAS (Fig.  6b). 
This result suggested that the P94S mutation in RFT1-
BAS prevented the interaction with the 14-3-3 protein. 
Therefore, we proposed that rft1-BAS is a nonfunctional 
allele caused by a coding SNP that leads to the P94S 
substitution.

Discussion
CSSLs are an excellent population for QTL mapping and 
gene cloning. Currently, a number of CSSLs populations 
with indica and japonica as parents have been success-
fully constructed (Kubo et  al. 2002; Xi et  al. 2006; Zhu 

Fig. 6  a The nucleotide sequences and amino acid sequence variation sites of RFT1 in HHZ and BAS compared with Nipponbare. b The protein 
interactions were tested by yeast two-hybrid assays. RFT1-HHZ interacted with six members of the 14-3-3 protein family, but RFT1-BAS did not 
interact with any. The interactions are indicated by blue-colored yeast colonies on SD/ − Ade/ − His/ − Leu/ − Trp/ + X-α-Gal/ + aureobasidin A 
(-AHLT) media. SD/-Leu/-Trp (-LT)
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et  al. 2009). In addition, some groups have constructed 
CSSLs using cultivated rice as recurrent parents and wild 
rice as donors (Ma et al. 2019; Yuan et al. 2020; Xi et al. 
2006). Based on the several CSSLs populations, many 
important functional genes have been cloned. A total 
of 153 single segment substitution lines (SSSLs) were 
constructed by crossing Basmati385 (donor parent) and 
HJX74 (recurrent parent), and OsSPL16, which controls 
grain size, grain shape and rice quality, was cloned from 
this population (Wang et al. 2012a; Zhang et al. 2004; Xi 
et al. 2006). PROG1, which controls the prostrate growth 
habit of common wild rice, was originally mapped from 
a set of CSSLs derived from Teqing as the recurrent par-
ent and wild rice (O. rufipogon) as the donor parent (Hao 
et  al. 2006; Jin et  al. 2008). In this study, we mapped a 
number of novel QTLs using 116 CSSLs that will be used 
for gene cloning in future studies. For example, qHD4-2 
for heading date was mapped between 18.5 and 22.0 Mb 
on chromosome 4; genes related to heading date have 
not been reported in this region. Therefore, this set of 
CSSLs provides excellent material for QTL mapping and 
cloning.

CSSLs contain one substituted chromosomal segment 
from the donor parent, so they can be used as near-iso-
genic lines (NILs) by themselves or can be developed into 
higher resolution NILs by crossing with the recurrent 
parent again (Zamir 2001). NILs must be constructed 
when cloning genes using the traditional QTL cloning 
method (Zhang et al. 2006). To genotype a CSSLs popula-
tion, molecular markers that are inexpensive and easy to 
use must be adopted. Currently, multifarious molecular 
marker systems have been established. However, in the 
process of constructing CSSLs by the MAS method, the 
size of the substituted fragment cannot be accurately cal-
culated; therefore, deviations may occur in QTL detec-
tion (Paterson et al. 1990). High-throughput genotyping 
by whole-genome resequencing can accurately determine 
recombination breakpoints (Huang et  al. 2009), which 
have been used for physical mapping of RIL, F2 and CSSL 
populations (Wang et  al. 2011; Huang et  al. 2016; Xu 
et al. 2010).

The stable production of rice is directly related to global 
food security. Therefore, breeding varieties with high 
yield, strong stress resistance (biotic and abiotic stresses) 
and superior quality should be a top priority for breed-
ers (Zhang 2007). However, using traditional breeding 
methods to improve multiple crop traits simultaneously 
is difficult (Schaart et  al. 2016). Recently, the concept 
of rational design breeding was proposed, and valu-
able genes from different rice varieties were pyramided 
to simultaneously improve multiple traits in Teqing in a 
short time (Zeng et al. 2017). In previous studies, accord-
ing to RiceNavi, we pyramided Badh2 (Chen et al. 2008), 

TAC1 (Yu et  al. 2007) and OsSOC1 (Lee et  al. 2004) 
from BAS, and the new line showed improved grain fra-
grance, heading date, plant type and yield compared with 
HHZ (Wei et al. 2021). The 117 CSSLs created here can 
be applied to the innovation of germplasm resources. 
Moreover, we also designed 396 InDel markers based 
on HHZ and BAS genome sequences; these markers can 
be applied to gene pyramiding of different chromosome 
segments.

Even though each CSSL contains only one segment, 
the QTL mapping interval is still large. However, quan-
titative trait nucleotide (QTN) variation information of 
some major loci in rice has been extensively studied (Wei 
et al. 2021), and QTNs can be located in many different 
populations. Therefore, even if some QTLs are located 
in a large interval, the main causal genes contained in 
this interval can be analyzed based on previous research 
results and existing biological techniques. For instance, 
the BAS allele at locus qPH1-1, which can increase plant 
height, was located at 35.7–40.2 Mb on chromosome 1, 
where SD1-BAS was confirmed as a wild-type allele. Fur-
thermore, rice FT is candidate gene of qHD6-1. By com-
bining different analysis and experimental methods, we 
confirmed with high probability that the candidate gene 
of qHD6-1 is RFT1.

Conclusions
In summary, we successfully developed a set of CSSLs 
by combining MAS and high-throughput genotyping 
based on whole-genome resequencing. These CSSLs can 
be used for QTL mapping, cloning and molecular breed-
ing. Using this set of CSSLs, we not only detected cloned 
QTLs but also found some novel QTLs. Among them, a 
new nonfunctional rft1-BAS allele was verified based on 
yeast two-hybrid experiments.

Materials and Methods
Plant Materials
Huanghuazhan (HHZ), an indica cultivar, is often used as 
a restorer line in three-line hybrid rice seed production. 
The aromatic rice Basmati Surkb 89–15 (BAS) is native 
to Pakistan. The variety HHZ was used as the recipient 
parent, and BAS was used as the donor parent. The two 
parental lines were derived from the China National Rice 
Research Institute. All materials used in the process of 
population construction were grown in the summer in 
Shanghai (121°42′ E, 30°97′ N) and in the winter in Sanya 
(109°19′ E, 18°38′ N), China.

DNA Extraction and Molecular Analysis
The TPS method was used for the extraction of genomic 
DNA from fresh leaves of each individual. DNA ampli-
fication was performed by PCR with the following 
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protocol: predenaturation at 94 °C for 5 min; 36 cycles of 
denaturation at 94 °C for 30 s, annealing at 53–58 °C for 
30  s, and extension at 72  °C for 30  s; and a final exten-
sion at 72  °C for 5  min. The reactions were carried out 
in 96-well PCR plates in 25  μl volumes containing 
50–100 ng of template DNA, 0.2 μmol/L of each primer 
and 12.5  μl of 2 × EasyTaq PCR SuperMix (TransGen 
Biotech Inc., China). Electrophoresis of the amplification 
products was carried out on 4% agarose gels and photo-
graphed using a Tanon 1600 Automatic Digital Gel Imag-
ing Analysis System (Tanon Inc., China).

High‑Throughput Genotyping by Whole‑Genome 
Resequencing
The genomic DNA from individuals from each gen-
eration used for sequencing was extracted from young 
leaves using magnetic beads (no. 500  T, NanoMagBio 
S-96, China). The Tn5 transposition system was used for 
DNA library construction. DNA libraries were sequenced 
with Illumina HiSeq X Ten or NovaSeq6000 using PE150 
flow cells according to standard procedures and gener-
ated 150  bp paired-end reads with an average 500  bp 
insert size for subsequent genotyping analyses. Approxi-
mately 0.4 × coverage sequence reads were generated for 
each line. Genotyping was performed using SEG-Map 
software.

Field Experimental Design and Phenotypic Assessment 
for CSSLs
The two parents and 116 CSSLs were planted in Shang-
hai (121°42′ E, 30°97′ N) and Hangzhou (119°93′ E, 
30°08′ N) in the summer of 2021. Thirty-day-old seed-
lings of each line were transplanted into a seven-row plot 
with seven plants per row and 25 × 30 cm spacing. Field 
management followed local regulations. The middle five 
plants in each row were used as samples for phenotypic 
measurement.

Heading date was defined as the time from sowing to 
emergence of the first inflorescences above the flag leaf 
sheath. Plant height, panicle length, and tiller number 
were measured 20 days after heading. The distance from 
the ground to the top of the first panicle was measured as 
the full height of the plant. Panicle length was measured 
as the plant height minus the distance from the ground 
to the neck-panicle node. Thirty replications were per-
formed for each trait in Shanghai, and two replications 
were performed in Hangzhou.

QTL Analysis for Three Agronomic Traits Based on CSSLs
Based on the physical map, each line was converted into 
a skeleton bin map with 3723 bins. Using a 116 bin map 
and phenotypic data, QTL analysis was performed with 
QTL IciMapping V4.2.53 software (https://​www.​isbre​

eding.​net/). WinQTLCart (Wang et al. 2012b) was used 
to analyze the heading time in the BC3F1 population, and 
the relevant parameters were set according to the user 
manual.

Using CSSLs with overlapping substituted fragments, 
the location of QTLs can be predicted by substitution 
mapping (Paterson et  al. 1990). MapChart2.32 (https://​
www.​wur.​nl/​en/​show/​MapCh​art-2.​32.​htm) was used to 
map the distribution of QTLs on chromosomes.

RNA Extraction and Yeast Two‑Hybrid (Y2H) Assay
Total RNA was extracted using TRIzol reagent (Invit-
rogen Inc.) following the manufacturer’s instructions. 
First-strand cDNA was retrotranscribed using reverse 
transcriptase (Takara Bio Inc.). The vectors and yeast 
strains used in the yeast two-hybrid assays were from 
Clontech (Beijing, China).

When studying the interaction between the RFT1-
HHZ/BAS and 14-3-3 family proteins, the coding 
sequences of RFT1 (BAS; HHZ: LOC_Os06g06300) 
were cloned into pGADT7. The 14-3-3 gene sequences 
(GF14a: Os08g0480800; GF14b: Os04g0462500; 
GF14c: Os08g0430500; GF14d: Os11g0546900; GF14e: 
Os02g0580300; and GF14f: Os03g0710800) were cloned 
into pGBKT7. The vectors were cotransformed with 
AD-RFT1s, and the transformed cells were selected 
on SD-Ade/-His/-Trp/-Leu/ + X-α-Gal/ + aureobasi-
din A medium. Assays were performed according to the 
Yeast Protocols Handbook (Clontech). Primers for the 
yeast two-hybrid vectors are listed in Additional file  7: 
Table S3.
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